NLP: Opinion classification

Posted by

Let’s perform some classification methods on the same tripadvisor data as in the post https://www.alldatascience.com/nlp/nlp-target-and-aspect-detection-with-python.

In this case we are going to read and preprocess the data again, then we are going to vectorize it in different ways,

1. With TF-IDF vectorizer that creates vectors having into account the frequency of words in a document and the frequency of words in all documents, decreasing weight of the words that appear too often (they can bee meaningless words such as articles or prepositions).

2. With Word2Vec that construct word embeddings having into account the words that are next or previous other words, so it is able to have into account the context in which a word can be important.

Later, using theese vectorizations we test two classifier:

  1. Logistic Regression, which searches the function that best fits the data.
  2. SVC: Support Vectors Classifier that searches the hyperplane that bests separates the data.

The Opinion field in the dataset is used to measure the accuracy, recall and F1 of the different classification approaches.

Aspect and sentiment detection

Let's load again tripadvisor data to calculate a classifier of positive and negative reviews using the Opinion field as a class..

In [46]:
tripadvisor_data = pd.read_csv('tripadvisor_data.csv')
tripadvisor_data[0:5]
Out[46]:
Short Long Class Opinion
0 “Very nice atmosphere” We were together with some friends at the Anew... family POS
1 “Very nice food, great atmosphere, feels like ... Martin and his staff are truely great! They ma... family POS
2 “Best Hotel on the Planet” We have stayed at the Excelsior on numerous oc... family POS
3 “What a vacation should be” Having four days free in Milan, we decided to ... friends POS
4 “Excellent stay” In all aspects an excellent stay. Professional... couple POS
In [47]:
#Join short and long descriptions in order to use all the words available.
trdata=tripadvisor_data['Short']+" "+tripadvisor_data['Long']
trdata[1]
Out[47]:
'“Very nice food, great atmosphere, feels like home” Martin and his staff are truely great! They make you feel at home. Their cheff does great things in the kitchen. We tasted a lot of dishes, prepared with quality ingredients. Our familyroom was nice with two separate bedrooms. The bathroom was small but our children had an extra sink in their bedroon so that was OK. The different bars (Stubes) our very cosy. A very nice place to stay!'
In [48]:
import re
#Remove stopwords
stopwords = []

#Import the list of stopwords provided in NLTK, 
#véase: https://sangeetablog.wordpress.com/2015/07/28/download-stopwords-from-nltk-library/#
stopwords = nltk.corpus.stopwords.words('english')


#Remove stopwords, punctuation marks and lemmatize.
def transform_sentence(sentence):
   
    #Quitamos signos de puntuacion y stopwords
    clean = re.sub("['.,“”']","",sentence) 
    terms=' '.join([word for word in clean.split() if word not in (stopwords)])
    return terms.lower()

terms_stream = [transform_sentence(dt) for dt in trdata]
In [49]:
terms_stream[0]
Out[49]:
'very nice atmosphere we together friends anewandter hof we took 4 apartments enabled us privacy & piece apartments fully equiped free use sauna & whirlpool hotel bonus every morning fresh bread waiting us door great atmosphere hospitable family mairl affordable price'
Let's vectorize with TF-IDF and fit a logistic regression classifier.
In [50]:
#############################################
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np

vectorizerNYT = TfidfVectorizer(
    analyzer= 'word',
 )
X = vectorizerNYT.fit_transform(terms_stream)
#Matriz con los vectores
MNYT = X.toarray()



print(MNYT)
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]
In [51]:
#Let's save the Opinion labels.
data_labels=tripadvisor_data['Opinion']

from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test  = train_test_split(
        MNYT, 
        data_labels,     # Opinion labels
        train_size=0.80, # We use 80% of the corpus as training data.
        random_state=1234)
In [52]:
from sklearn.linear_model import LogisticRegression

#Create the logistic regression classifier.
classifier = LogisticRegression()
#Let's fit the model
log_model = classifier.fit(X=X_train, y=y_train)
In [53]:
#Let's predict using test data.
y_pred = log_model.predict(X_test)

print("Prediction results")


print(y_pred)
Prediction results
['POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'NEG' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS']
Now, we vectorize the short field with word2vec, first we have to filter the words in the model vocabulary. Then, we fit again a logistic regression classifier.
In [54]:

def vectormean(words):
    words = [word for word in words if word in model.vocab]
    if len(words) >= 1:
        return np.mean(model[words], axis=0)
vector=[]
for td in tripadvisor_data['Short']:
    vector.append(np.mean(vectormean(td)))

len(vector)
Out[54]:
1461
In [55]:
#Split train and test data
X_train2, X_test2, y_train2, y_test2  = train_test_split(
        vector, 
        data_labels,     # Data labels
        train_size=0.80, # Use the 80% of the corpus as training data.
        random_state=1234)

#Transform data to 2 dimensions in order to perform the logistic regression.
X_train2=np.array(X_train2).reshape(-1,1)
X_test2=np.array(X_test2).reshape(-1,1)
In [56]:
from sklearn.linear_model import LogisticRegression

#Create the logistic regression model
classifier = LogisticRegression()
#Fit the model
log_model2 = classifier.fit(X=X_train2, y=y_train2)
In [57]:
#Predict with test data
y_pred2 = log_model2.predict(X_test2)

print("Prediction results")


print(y_pred2)
Prediction results
['POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS' 'POS'
 'POS' 'POS' 'POS' 'POS' 'POS']

Model evaluation and comparison.

En este apartado aplicaremos los conocimientos estudiados en el módulo 3.

We gather the metrics of the previous models and test the same vectorization methods with SVC classification. This way we compare 4 different methods.
  • Logistic Regression with tdifdvectorizer.
  • Logistic Regression with mean word2vec vectors.
  • SVC with tdifdvectorizer.
  • SVC with mean word2vec vectors.
We see how SVC with tdifdvectorizer is the best model for these data, both word2vec models yield the same result for both classification methods.
In [58]:
from sklearn import metrics

metrics.confusion_matrix(y_test, y_pred)

tn, fp, fn, tp = metrics.confusion_matrix(y_test, y_pred).ravel()
(tn, fp, fn, tp)

accuracy1=(tp+tn)/(tp+fp+tn+fn)
recall1=(tp/(tp+fn))
F1=2*accuracy1*recall1/(accuracy1+recall1)

print('Accuracy:'+str(accuracy1)+" ; "+"Recall:"+str(recall1)+" ; "+"F1:"+str(F1))
Accuracy:0.8327645051194539 ; Recall:1.0 ; F1:0.9087523277467411
In [59]:
tn, fp, fn, tp = metrics.confusion_matrix(y_test2, y_pred2).ravel()
(tn, fp, fn, tp)

accuracy2=(tp+tn)/(tp+fp+tn+fn)
recall2=(tp/(tp+fn))
F12=2*accuracy2*recall2/(accuracy2+recall2)

print('Accuracy:'+str(accuracy2)+" ; "+"Recall:"+str(recall2)+" ; "+"F1:"+str(F12))
Accuracy:0.8293515358361775 ; Recall:1.0 ; F1:0.9067164179104478
Let's gather SVC models metrics and compare the four models.
In [60]:
from sklearn.svm import SVC
svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train, y_train)
Out[60]:
SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
In [61]:
y_pred3 = svclassifier.predict(X_test)
y_pred3
Out[61]:
array(['POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'NEG', 'POS',
       'POS', 'POS', 'POS', 'POS', 'NEG', 'NEG', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'NEG', 'POS', 'NEG', 'POS', 'POS',
       'NEG', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'NEG', 'POS',
       'POS', 'POS', 'NEG', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'NEG', 'NEG', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'NEG', 'NEG', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'NEG', 'POS', 'POS', 'POS', 'POS', 'NEG', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'NEG', 'POS', 'POS', 'NEG',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'NEG', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'NEG', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'NEG', 'POS', 'POS',
       'NEG', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS'], dtype=object)
In [62]:
#############################################
# SOLUCIÓN                                  #
#############################################
#Vamos a implementar SVC, ahora con la media word2vec

from sklearn.svm import SVC
svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train2, y_train2)
Out[62]:
SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
In [63]:
#Resultados con la media word2vec
y_pred4 = svclassifier.predict(X_test2)
y_pred4
Out[63]:
array(['POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS', 'POS',
       'POS', 'POS', 'POS', 'POS', 'POS'], dtype=object)
In [64]:
from sklearn import metrics

tn, fp, fn, tp = metrics.confusion_matrix(y_test, y_pred3).ravel()
(tn, fp, fn, tp)

accuracy3=(tp+tn)/(tp+fp+tn+fn)
recall3=(tp/(tp+fn))
F13=2*accuracy3*recall3/(accuracy3+recall3)
print('Accuracy:'+str(accuracy3)+" ; "+"Recall:"+str(recall3)+" ; "+"F1:"+str(F13))
Accuracy:0.8976109215017065 ; Recall:1.0 ; F1:0.9460431654676259
In [65]:
from sklearn import metrics

tn, fp, fn, tp = metrics.confusion_matrix(y_test2, y_pred4).ravel()
(tn, fp, fn, tp)

accuracy4=(tp+tn)/(tp+fp+tn+fn)
recall4=(tp/(tp+fn))
F14=2*accuracy4*recall4/(accuracy4+recall4)
print('Accuracy:'+str(accuracy4)+" ; "+"Recall:"+str(recall4)+" ; "+"F1:"+str(F14))
Accuracy:0.8293515358361775 ; Recall:1.0 ; F1:0.9067164179104478
In [66]:
#Resumen de las 4 métricas
print('Logistic regression - TfidfVectorizer:')
print('Accuracy:'+str(accuracy1)+" ; "+"Recall:"+str(recall1)+" ; "+"F1:"+str(F1))
print('Logistic regression - word2vec:')
print('Accuracy:'+str(accuracy2)+" ; "+"Recall:"+str(recall2)+" ; "+"F1:"+str(F12))
print('SVM - TfidfVectorizer:')
print('Accuracy:'+str(accuracy3)+" ; "+"Recall:"+str(recall3)+" ; "+"F1:"+str(F13))
print('SVM - word2vec:')
print('Accuracy:'+str(accuracy4)+" ; "+"Recall:"+str(recall3)+" ; "+"F1:"+str(F14))
Logistic regression - TfidfVectorizer:
Accuracy:0.8327645051194539 ; Recall:1.0 ; F1:0.9087523277467411
Logistic regression - word2vec:
Accuracy:0.8293515358361775 ; Recall:1.0 ; F1:0.9067164179104478
SVM - TfidfVectorizer:
Accuracy:0.8976109215017065 ; Recall:1.0 ; F1:0.9460431654676259
SVM - word2vec:
Accuracy:0.8293515358361775 ; Recall:1.0 ; F1:0.9067164179104478
In [ ]: